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In Engineering Mechanics: Statics, our aim is to equip
students with the knowledge, tools and good habits
for solving mechanics problems in realistic con-
texts. Mechanics courses have historically presented
engineering students with a precise, mathematical
treatment of the material. This approach has appeal
in that it presents mechanics as a relatively unclut-
tered “science.” On the other hand, this material
is generally of idealized cases, and students, when
confronted with more realistic systems, are often at
a loss as to how to proceed.

From the outset in Chapter 1 we focus on devel-
oping good problem solving habits that include being
systematic about the analysis process, understanding
the modeling assumptions, and developing intuition
for how loads are transferred through structures and
machines. This introduction of the material provides
a motivational framework for the more mathemati-
cal presentation of statics found in Chapters 2-11.

Throughout this text, our emphasis is to present
and illustrate:

a. The physical principles and concepts that
describe non-accelerating objects. These principles
and concepts are grounded in the reader’s own expe-
riences to motivate and provide a context for formal
mathematical representations.

b. An analytical problem-solving methodology
for describing and assessing physical systems, so
that the reader is able to apply the principles in a
systematic manner in evaluating engineered sys-
tems. Throughout the text, the methodology and its
application are framed within the context of broader
engineering practice.

c. A wide variety of problems from daily life and
engineering practice. Through our “Watch-It” videos
and multiple styles of artwork we demonstrate how
messy-looking problems can be simplified for engi-
neering analysis.

This online course has been written and developed
explicitly with the students in mind —those in the
class who are trying to get their minds around the
material for the first time. Mechanics can sometimes
be counterintuitive, and it can be a major frustration
to those students who do not immediately relate to
the logic behind the material (and this includes many

of them!). Thus the presentation is a personalized
one—one in which the students feel that they are
having a one-on-one discussion with the authors. We
do not skimp on rigor but do try to make the material
accessible and, as far as we can, make it fun to learn.

Features

The goals outlined above are supported by a number
of unique features in this online course:

Emphasis on sketching: We emphasize the
importance of communicating solutions through
graphics both to enhance learning and to prepare
the reader for engineering practice. Most engineer-
ing students are visual learners." In Chapter 1 we
introduce the importance of visualizing and sketch-
ing skills for the successful implementation of struc-
tured analyses, and provide guidelines for sketching
objects. We further reinforce the importance of
drawing through:

a. A full chapter (Chapter 4) devoted to the skill
of drawing free-body diagrams, including drawings
on engineering graph paper background that have a
hand-sketched look to provide examples to students
of how to document solutions. An ideal response
from a reader regarding a graphical element of the
text would be, “The sketch in Figure 2.3.5 made the
concept more understandable AND I can create a
similar drawing to illustrate the concept to someone
else.”

b. A Draw step included in every worked exam-
ple. To reinforce the drawing concept we use “hand-
drawn” figures on graph paper.

Structured problem solving procedures:
We introduce a structured analysis procedure early
in the text and use it consistently in all worked
examples. These steps include explicitly listing the
Assumptions made and the importance of the Draw
and Check steps as part of a complete solution.

! Felder, Richard, “Reaching the Second Tier: Learning and
Teaching Styles in College Science Education.” J. College
Science Teaching, 23(5), 286-290 (1993).



Vi PREFACE

Multiple paths for students to learn:
Different students find they learn better in different
ways and having variety is both motivating and helps
deepen understanding of new concepts. We provide
text to read, videos to watch, and many problems for
students to tackle.

Feedback for students and faculty:
Getting feedback is a key tool in effective learning
for students and effective teaching for instructors.
Online resources in WileyPLUS give students rapid
feedback on their level of preparation, whether they
understand a new concept, and on their ability to
carry out more detailed calculations. At the same
time, the instructor has a window into how her stu-
dents are doing by getting individualized and class-
average scores to these online problems.

Scaffolding in learning: Statics concepts
often look easy, but they can be surprisingly subtle.
A strong grasp of the fundamental concepts is needed
to use statics successfully to analyze systems. To
develop this grasp of concepts we break them up for
students into individual pieces, providing multiple
opportunities to explore and master new concepts
before moving on. The “Are You Ready” problems
at the beginning of each chapter let students assess
if they have a good understanding of the math and
previously covered mechanics topics they need in
order to be ready to learn the next chapter material.

Multiple study tools: To facilitate speedy
access to key content, we have included review and
study tools, such as Learning Objectives at the start
of each chapter, and a Just the Facts section at the
end of each chapter giving an overview of terms,
equations, and concepts from each chapter. To the
greatest extent possible, all in-text figures include
descriptive figure captions that show at a glance what
is being illustrated. Key equations are highlighted
in yellow, and key terms are in bold blue type when
they first appear.

Instructor Resources

The following resources are available to faculty using
this text in their courses:

WileyPLUS:
The Engineering Mechanics: Statics WileyPLUS
course is a new-generation online learning system

designed to address the key learning and teaching
issues in today’s engineering mechanics course. It
includes powerful and customizable content, tools,
and resources to facilitate mastery of introductory
statics for students of a wide range of abilities and
preparation. The system uses scaffolded practice
and feedback as a means to build student compe-
tency, confidence, and commitment. The system also
improves productivity and assessment of learning
progress for any class size and across many sections
so that instructors can focus on teaching.

Each individual element of the online experience
has been crafted to become part of a larger, cohesive
learning experience, one that leverages the unique
capabilities available in a digital setting.

To deliver on student learning and mastery chal-
lenges, Engineering Mechanics: Statics implements:

e Diagnostic assessment before each new chapter—
Students are able to gauge their readiness for
each new chapter—and what they may need to
review further—with a brief diagnostic quiz.

e A consistent instructional cadence: tell, show,
do—For each new major concept within a chap-
ter, students will read or watch a passage that
develops it, then see solved examples that apply
it, and finally have an opportunity to master it
through progressive, interactive exercises.

e Scaffolded learning—Practice exercises and a
selection of homework problems use techniques
such as hints, partial solutions, feedback on com-
mon mistakes, and progressive complexity to
build student confidence and reinforce skills.

e Optional pathways and resources—The system
facilitates differences in students’ ideal learning
styles. For example, they are able to choose a
preferred pathway through the conceptual and
example content, leveraging both video and
textual content to reinforce their understanding
of the material presented. All practice exercises
are available to students for self-study, even if
they are not formally assigned by instructors for
assessment.

Solutions Manual: Fully worked solutions to
all exercises in the text, using the same solution pro-
cedure as the worked examples.

Electronic figures: All figures from the text
are available electronically, for use in creating your
own lectures.



Student Resources

The following resources are available to students:

Answers to selected exercises: The text
companion site, www.wiley.com/college/sheppard,
includes answers to selected exercises from the text,
to help students check that they have solved the
exercises correctly.

Commitment to Accuracy

From the beginning we have committed to provid-
ing accurate and error-free coverage of the material.
In this mission we have benefited from the help of
many, many people.

While writing solutions, each solution was solved
and checked at least twice, by a combination of
authors, accuracy checkers, and graduate students.

All text and art were reviewed line by line by a
developmental editor. A proofreader compared all
corrections to final pages to confirm that any and
all corrections were made. Finally, and certainly not
least, the authors themselves spent countless hours
checking all elements of the project at every step of
the way to guarantee accuracy.

Despite our best efforts, it is possible that some
errors still remain. Should anyone find anything they
question, please contact the authors and we will see
that any necessary corrections are made.
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FOR STATIC
ANALYSIS
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forces that act on structures in equilibrium.
Newton’s laws of motion are used to
establish mathematical relationships
between the various quantities involved.
These relationships enable us to predict
how the quantities affect one another.
After studying the material in this text, you
should be able to use static analysis,
which involves

1. looking at a structure and seeing how it
resists loads,

2. creating a model of the structure,

3. evaluating the loads on the structure
that keep it in equilibrium, and

4. postulating and answering “what if”
questions about the structure.

This sequence of events is illustrated in
Figure 1.1.1.

Static analysis is one example of
engineering analysis. More generally,
engineering analysis involves performing
the calculations needed to assess the
behavior of a system. The basis for these
calculations is often physical principles
from chemistry and physics. This chapter
presents background material for static
analysis.




LEARNING OB JECTI VES

On completion of this chapter, you will be able to:

+ Summarize the steps of the product realization process and an engineering analysis
procedure. (1.1)

+ State Newton's three laws of motion. (1.2)

+ Convert between Sl and USCS units. (1.3)

+ Represent vectors. (1.4)

+ Recognize the different types of drawings used in engineering analysis and basic guidelines for

creating them. (1.5)

Describe good problem-solving habits. (1.6)

+ State the overall goal of this text. (1.7)

*

R 1.1 HOW DOES ENGINEERING

base of the highway sign? ANALYSIS FIT INTO ENGINEERING
PRACTICE?

Learning Objective: Summarize the steps of the

product realization process and an engineering analysis
procedure.

There are some 1.5 million practicing engineers in the United States; this
is less than 1% of the U.S. population. Engineers create the products and

J Z°j:m systems that we interact with daily. They create products that improve

’ A<l our quality of life (surgical devices, air-scrubbers in smoke stacks),

A Formulate entertain us (roller blades, roller coasters, electric trains, bikes), and

: a T Equations: educate us (LCD projection systems, computers). Engineers also create

\1\? Fax _ the systems that extend our reach from our planet’s surface to the bot-
o tom of the ocean and to distant planets.

@) ©) The process by which engineers design and manufacture these prod-
ucts and systems is referred to as the product realization process and
may extend over months (less than six months for disk drives), years
(for automobiles or bridges), or even decades (as in the case of the space
station).

Any product or system begins with someone identifying an initial
client need (the design problem). This need may arise from the market,
the development of new technology, the demand for more sophisticated
engineered systems or simply the President of the United States stat-

| wownder 1§ we can take the
sawe basic Sign design and
extend it over 3 |lanes of tvaf§ic?

) ing, “We will go to the moon before the end of the decade.” Engineers
- P —— design a product or system to solve some problem. Identification of a
Figure 1.1.1 Engineer using analysis problem includes development of a list of design requirements. These
to answer a question. design requirements are benchmarks used to evaluate progress toward a

design solution, as well as the effectiveness of the final design solution.
They may have to do with, for example, the final design’s performance,
appearance, time-to-market, cost, ease of manufacture, safety, impact on
the environment, or ability to meet national or international standards.

Listing of design requirements is followed by generation of ideas on
how to address the need or problem. These early ideas are referred to
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as design concepts, and this phase of the product realization process is
known as conceptual design.

Conceptual design is followed by preliminary design, where some of
the concepts are developed further and some are discarded. Often the
decision to continue with or discard a concept is based on an evaluation
of how well the concept meets the design requirements. Evaluation
may involve calculations and/or building prototypes (physical or vir-
tual) of the concept. Typically, preliminary design ends with the selec-
tion of a single concept that will be detailed and refined in the next
phase of design (called detail design).

Decisions made during detail design about specific configurations of
components, types of materials, size of connections, methods of manu-
facturing, and so on, are often based on analysis to confirm that design
decisions and choices continue to meet the design requirements. The
analysis may involve numerical modeling and simulation. Building and
testing of prototypes may also be involved.

Detail design results in a comprehensive description of the product
or system. This description consists of drawings, complete fabrication
specifications, and supporting documentation that describes the design
decisions. It should also include analysis details and test results that sup-
port these decisions.

Detail design is followed by production, in which the product or sys-
tem is constructed or manufactured. Here engineers oversee the process
to verify that the final product meets the design requirements. Analysis
may be used in this verification.

The product realization process that we have described may sound
like a linear, sequential process, with one phase connecting to the start
of another phase. In reality the process is a continuous loop, as suggested
in Figure 1.1.2. For example, new design requirements may be generated
later in the process as additional details of the design are being worked
out. Also the real problem being solved may not be identified until well
into the conceptual phase of design, or two competing concepts may be
carried into detail design before a decision is made as to which one will
be produced.

Regardless of where in the product realization process flowchart an
engineer is working, he or she is likely to be involved in verifying and
justifying decisions about the product. Engineering analysis is one of the
main tools the engineer will use. The major steps in engineering analysis
are summarized as an engineering analysis procedure (see Box 1.1).

In carrying out engineering analysis it is critical to simultaneously con-
sider the physical situation and the mathematical model of the physical
situation. The mathematical model allows us to understand and predict
performance of the physical situation. At the same time, any model is
only an approximation of the physical situation, and so is an estimate
of real performance. One of the challenges in undertaking engineering
analysis is learning to appropriately model a physical situation to obtain
insights into its approximate performance.

Client “need” identification
(define need and
design requirements)

Y

Conceptual design
(generate concept designs)

Y

Preliminary design
(select concepts to develop
further based on analysis
and/or prototype testing)

Y

Detail design
(refine choices, add such
details as specific part types
and dimensions, build and
test prototypes, carry out
analyses to verify decisions)

!

Production
(construct product for client)

Figure 1.1.2 Product realization
process flowchart.

3
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Box 1.1: Overview of Engineering Analysis Procedure

Understanding Problem

Goals

analysis

L.

Givens

Identify questions to be answered by

Summarize and record what is

known

| Assumption Define assumptions used in creating
SSUMPUONS ) odel of the system of interest
Modeling
Draw diagrams necessary to represent the \
Draw
model
| Formulats Formulate equations that
ormuiate represent the model’s behavior
| Sol Solve equations for unknowns and
ove state how results meet analysis goals
\ Confirming Values
(" Check results using technical knowledge,
Check engineering judgment, and common sense
| . Summarize and interpret
Summarize
answers
(8

1.2 PHYSICS PRINCIPLES: NEWTON’S
LAWS REVIEWED

Learning Objective: State Newton’s three laws of motion.

The physical principles that underlie engineering analysis in this text are
Newton’s three laws of motion:'

First Law: An object will remain at rest (if originally at rest) or will
move with constant speed in a straight line (if originally in motion) if
the resultant force acting on the object is zero. Another way of stat-
ing the same law is that an object originally at rest, or moving in a
straight line with constant velocity, will remain in this state provided
the object is acted on by balanced forces.

Second Law: If the resultant force acting on an object is not zero, the
object will have an acceleration proportional to the magnitude of the
resultant force and in the direction of this resultant force.

"The man most immediately responsible for what you’ll be learning in this book is Sir
Isaac Newton. Even among geniuses, Newton stands out. He needed a new mathemati-
cal approach to handle his investigations and so he invented calculus. That same year, he
revolutionized optics by realizing that white light is made up of a spectrum of colors. And,
to top it all off, he laid down his three laws of motion. Even more amazing, he did all of
this when he was in his early twenties while taking a short break from London in order to
avoid the plague.
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Third Law: The forces exerted by two objects on each other are equal in
magnitude and opposite in direction.

In this text we use the first and third laws extensively to describe situations
where objects are at rest or are moving at constant velocity as a result of
being acted on by balanced forces. We call these situations “static.” This
text is about static analysis, which is often referred to simply as statics.
Statics can be used to design and describe a wide array of engineered sys-
tems, from the propulsion of bicycles (as described in Appendix D) to the
tension in the cables in a suspension bridge (as described in Appendix E).

Closely related to statics is dynamics, the area of engineering that also
embodies analysis based on Newton’s laws except that the object is mov-
ing at a nonconstant velocity, an acceleration, as described by Newton’s
second law. In mathematical terms, the second law says that if an object
is acted upon by an unbalanced force F, the object experiences accelera-
tion a in the same direction as the force. The acceleration is proportional
to the force (and the proportionality factor is the mass m of the object):

F =ma (1.1)

The bold italic notations F and a denote that these are vector quantities.
Dynamics is usually covered in a separate course apart from statics.

Together statics and dynamics make up the study of “rigid body
mechanics.” A rigid body is a combination of a large number of particles
in which all the particles remain at a fixed distance from one another
before, during, and after a force is applied to the object. As a result,
the material properties of any object that is assumed to be rigid will not
be considered when analyzing the forces acting on the object. In most
cases, the actual deformations occurring in structures, machines, mecha-
nisms, and the like are relatively small, and the rigid-body assumption
is suitable for analysis or preliminary design. Detail design requires full
investigation of the deformations.

1.3 PROPERTIES AND UNITS IN
ENGINEERING ANALYSIS

Learning Objective: Convert between Sl and USCS units.

Static analysis involves quantifying, manipulating, and measuring prop-
erties of objects. The properties we are concerned with are length, time,
mass, and force:

Length is a description of distance.

Time is conceived as a succession of events. Although the principles of
statics are time-independent, this quantity does play an important
role in the study of dynamics.

Mass is a property of matter by which the action of one object can be
compared with the action of another. This property manifests itself as
a gravitational attraction between two bodies and provides a quan-
titative measure of the resistance of matter to a change in velocity.

Force is considered as a push or pull exerted by one object on another.

5



6

CH 1 PRINCIPLES AND TOOLS FOR STATIC ANALYSIS

Table 1.1 Standard Measures

Standard Unit Standard Unit Standard Unit Standard Unit

Name of Length of Time of Mass of Force
International System of Units (SI) meter (m) second (s) kilogram (kg) newton (N)*
U.S. Customary System of Units (USCS) foot (ft) second (s) slug™* pound (Ib)

*derived quantity, based on meter, second, and kilogram, as discussed below (N =

*#*derived quantity, based on foot, second, and pound, as discussed below (slug =

kg~m)

)

Ib-s?
ft

In working with these quantities we need consistent and standard mea-
sures—these are provided by the International System of Units (abbre-
viated SI after the French Le Systeme International d’Unités) and the
U.S. Customary System of Units (USCS), as summarized in Table 1.1.
The SI system is the accepted national standard of measurement in all
countries except Myanmar, Liberia, and the United States.

Sl1 Units

As shown in Table 1.1, the standard measure of length in the SI system
is the meter, which is roughly the length from an adult’s nose to his or
her extended finger tips. Often engineers deal with lengths that are
much larger (e.g., Earth’s radius) or smaller (e.g., the thickness of a sheet
of paper) than a meter; therefore, it may be more appropriate to deal
with multiples or submultiples of the meter. We denote these multiples
or submultiples with the prefixes listed in Table 1.2. For example, the

Table 1.2 Sl Prefixes*

Factor Prefix Symbol
10'8 exa- E
105 peta- P
1 000 000 000 000 = 10' tera- T
1 000 000 000 = 10° giga- G
1 000 000 = 10° mega- M
1000 = 10° kilo- k
100 = 10 hecto- h
10 = 10" deka- da
01=10" deci- d
0.01 =102 centi- c
0.001 =10 milli- m
0.000 001 =107° micro- u
0.000 000 001 = 107’ nano- n
0.000 000 000 001 = 107" pico- p
0.000 000 000 000 001 = 1071 femto- f
0.000 000 000 000 000 001 = 107'# atto- a

*Prefixes commonly used in this text are shown in boldface type.
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mean radius of Earth is 6.37 x 10° m or 6370 km, and a sheet of paper is
1x10™* m or 0.1 mm thick.

The standard measure of mass in the SI system is the kilogram (kg),
defined as the mass of a particular platinum-iridium cylinder kept at the
International Bureau of Weights and Measures near Paris. From Table
1.2, we see that the prefix of “kilo” means that this standard has a mass
of 1000 grams. Engineers work with a range of mass sizes, from the very
large (mass of a Boeing 787) to the very small (mass of a white blood cell).

The standard measure of time is the second (s).

The standard unit of force in the SI system is the newton (N). One
newton is equal to the force required to give 1 kilogram of mass an accel-
eration of 1 m/s>. We will have a lot more to say about forces in Chapter 2.

In the SI system, length, mass, and time are the fundamental
properties, and force is a derived quantity from Newton’s second
law. By Newton’s second law (1.1), one newton (1 N) of force equals
[1kg][1%] = [X™]. Guidelines for working with SI prefixes and units

S2

are given in Box 1.2.

U.S. Customary Units

The standard measure of length in this system is the foot, as shown in
Table 1.1. The standard measures for time and force are the second and
pound, respectively.

In the U.S. Customary system, the fundamental properties are length,
force, and time. The standard unit of mass in the U.S. Customary system
is called the slug and is derived from the foot, second, and pound using
Newton’s second law. One slug is equal to the amount of matter that is
accelerated at 1 ft/s” when acted upon by a force of 1 pound (1 slug =
11b - s%/ft).

No matter which system of units you are working with, it is imperative
that you use consistent units. For example, if you are using kilometers as
the measure of length, make sure that you use kilometers consistently
for all measures of length in the problem. Do not mix with feet or miles.
Sometimes you may need to convert quantities from one measurement
system to another; Table 1.3 lists some conversion factors for going
between U.S. Customary units and SI units.

Table 1.3 Conversion Factors

Converting from U.S. Customary to SI

Quantity U.S. Customary To SI multiply by
Force Ib 4.4482 N/Ib
Mass slug 14.5938 kg/slug
Length ft 0.3048 m/ft
Converting from SI to U.S. Customary
Quantity SI To U.S. Customary multiply by
Force N 0.2248 Ib/N
Mass kg 0.06852 slug/kg

Length m 3.2808 ft/m

7
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Box 1.2: Guidelines for Working with Sl Prefixes and Units

1. Unit symbols are always written in lowercase let-
ters, with the following exceptions: symbols for
some prefixes and symbols named after an indi-
vidual are capitalized (e.g., N for newton).

2. Unit symbols are never written with a plural “s”
because this may be confused with the unit for
second (s).

3. Compound prefixes should not be used. For exam-
ple, k um (kilo-micrometer) should be expressed as
mm (millimeter) since 1(10°)(10°*) m=1(10) m =
1 mm.

4. The exponential power given for a unit having a
prefix refers to both the unit and its prefix (e.g.,
mm? = (mm)* = mm - mm).

5. In engineering notation, exponents are generally
displayed in multiples of three. This convention
facilitates conversion to the appropriate prefix.
For example, 4.0(10*) N can be rewritten as 4.0 kN.

6. Quantities defined by several units that are mul-
tiples of one another are separated by a dot to

1.3.1. [*] Derive conversion factors for changing the fol-
lowing U.S. Customary units to their SI equivalents:

a. Pressure, Ib/in.?

b. Force, kip

c. Volume, ft*

d. Area, in.2

1.3.2. [*] Derive conversion factors for changing the fol-
lowing SI units to their U.S. Customary equivalents:

a. Pressure, N/m” (pascal)

b. Pressure, MPa (Megapascal)

c. Volume, m*

d. Area, mm?

1.3.3. [*] Jamaican sprinter Asafa Powell set the world
record for the 100-meter dash on May 27, 2010. His time
was 9.07 seconds. Calculate his average speed in m/s, ft/s,
and mph.

1.3.4. [*] Calculate the percent difference between the
mile and the metric mile (1500 meters).

1.3.5. [*] The world best performance in the women’s
marathon is 2:17:42, set by Paula Radcliffe of the United
Kingdom on April 17, 2005 in the London Marathon. On

avoid confusion with prefix notion (e.g., N = kg -
m/s* = kg-m-s). The dot notation differentiates
m-s (meter-second) from ms (millisecond).

. Avoid prefixes in the denominator of composite

units. For example, write kN/m rather than N/mm.
The exception to this rule is the kilogram (kg);
since it is the base unit of mass, it is fine to use it
in the denominator (e.g., write Mm/kg rather than
km/g).

. When calculating, convert all prefixes to powers

of 10. For example, (100 kN)(200 um) = [100(10°)
N)][200(10-%)m] =20,000(10~*) N - m. Then express
the final result using a single prefix combined with
anumerical value between 0.1 and 1000: 20,000(10%)
N-m becomes 20 N-m.

. Minutes, hours, days, and so forth are used for

multiples of the second. Plane angular measure-
ment is made using radians (rad) or degrees (°).

average, how long did it take her to run each mile? What
was her average speed in m/s? A previous best perfor-
mance was 2:18:47, turned in by Catherine Ndereba from
Kenya. (The race was run in Chicago on October 7, 2001.)
How much faster did Paula Radcliffe run each mile of the
race?

1.3.6. [*] In the heavyweight division, Russian Aleksey
Lovchev holds the world record for the clean and jerk. He
lifted a mass of 264 kg. Calculate the mass in slugs. What
is the corresponding weight in newtons and pounds? How
many people would it take to clean and jerk a Porsche 911
if they were all as strong as Aleksey Lovchev? (Make sure
to document your source for weight data.)

1.3.7. [*] When a certain linear spring has a length of
180 mm, the tension in it is 170 N. For a length of 160 mm,
the compressive force in the spring is 120 N.

a. What is the stiffness of the spring in SI units? In U.S.
Customary units?

b. What is its unstretched length in SI units? In U.S.
Customary units?

1.3.8. [*] Complete the following two tables:
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MEN’S World Records for Selected Field Events

Event Meters Centimeters Inches Feet Miles
High jump 2.45 96.46
Pole vault 6.16 20.21
Long jump 352.36
Triple jump 720.08 60.01 1.14E-02
Shot put 23.12 75.85
Discus throw 7408
Hammer throw 8674 341496  284.58
Javelin throw 98.48 323.10
WOMEN'’S World Records for Selected Field Events
Event Meters Centimeters Inches Feet Miles
High jump 2.09 6.86
Pole vault 506 199.2
Long jump 24.67  4.67E-03
Triple jump 15.50 610.2 9.63E-03
Shot put 2263 74.25
Discus throw 3023.6 251.97
Hammer throw 3192.1 266.01
Javelin throw 237.14

1.4 COORDINATE SYSTEMS AND VECTORS

Learning Objective: Represent vectors.

Coordinate Systems

In working with physical objects it is useful to specify information about
them relative to a Cartesian coordinate system, which uses three axes that
are orthogonal to one another, as shown in Figure 1.4.1a. In addition, the
system is right-handed. In a right-handed system, if you point the fingers
of your right hand in the direction of the positive x axis and bend them
(as in preparing to make a fist) toward the positive y axis, your thumb
will point in the direction of the positive z axis, as shown in Figure 1.4.15.

The assignment of coordinate axes is often a matter of convenience, and
the choice is frequently up to the engineer. The logical choice is usually
indicated by the geometry of the situation. For example, when the principal
dimensions of a system or structure are given in the horizontal and vertical
directions, the assignment of coordinate axes in these directions is gener-
ally convenient (Figure 1.4.2a). If the structure and/or the forces are not
aligned with the horizontal and vertical directions, alternative orientations
of the coordinate axes may be appropriate, as shown in Figure 1.4.2b.

Scalar and Vector Quantities

Static analysis deals with two kinds of quantities—scalars and vectors.
Scalar quantities can be completely described with a magnitude (number
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Figure 1.4.1 xyz coordinates arranged
in right-handed manner.
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Figure 1.4.3 A position vector.
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Figure 1.4.4 (a) Two vectors to be
added; (b) vector addition using the
parallelogram law.
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Figure 1.4.2 Various orientations of coordinate axes.

only) and associated units. Examples of scalar quantities are mass,
density, length, area, volume, speed, energy, time, and temperature. In
mathematical operations, scalars follow the rules of elementary algebra.
Scalars in this text are represented with italic type (V).

In contrast to scalars, vector quantities have both magnitude (with
units) and direction, and obey the parallelogram law of addition, as
described below. Examples of vector quantities are velocity, accelera-
tion, momentum, force, moment, and position.

A vector is typically represented in drawings by an arrow with a head
and a tail (Figure 1.4.3). The direction from the tail to the head of the
arrow represents the direction of the vector, and the length of the arrow
is often drawn proportional to the magnitude of the vector. The magni-
tude of the vector is generally written next to the arrow.

In this text, vector quantities are distinguished from scalar quanti-
ties through the use of boldface italic type (V). In longhand writing,
a vector may be denoted by drawing a “half arrow” above the letter,
V. Euclidean norm bars surrounding the vector symbol are used to
denote the magnitude of a vector. Thus, the magnitude of the vector V
is denoted by |[V]], or ||V|| (in longhand).

As mentioned above, vectors obey the parallelogram law of addition.
This means that the two vectors V; and V, in Figure 1.4.4a can be
replaced by an equivalent vector V that is the diagonal of a parallelogram





